聯系電話:
010-5637 0168-696
您現在的位置:首頁>產品展示>光譜儀器>熒光光譜分析儀(系統)
飛秒瞬態吸收光譜系統Omni-fs-TA
Omni-fs-TA 飛秒瞬態吸收光譜系統用于研究光電材料、光電器件,有機太陽能電池等激發態光譜和動力學,是在超快時間 尺度上研究物理和化學材料體系中各種動力學過程的有效工具, 用于能源材料、納米材料、有機分子材料的光化學過程更深 層次的探究和論證。
泵浦- 探測原理
光是調控和測量分子能級躍遷的重要手段,分子受光激發以后發生能級躍遷,這伴隨著分子基態和激發態布局數的變化,從而會引起分子或材料系統對光的吸收或發射發生變化。泵浦-探測技術通過一束脈沖光激發樣品,用于發生能級躍遷,再利用一束脈沖光對激發態進行探測,連續調節激發光脈沖和探測光脈沖的時間延遲,能夠得到激發態隨時間變化的動力學過程,實現對激發態弛豫過程的監測。
泵浦- 探測能級躍遷示意圖
飛秒瞬態吸收光譜系統Omni-fs-TA
飛秒瞬態吸收光譜是一種在飛秒時間尺度上的時間分辨泵浦-探測(pump-probe)技術,因其時間尺度較短,該方法可以用于探測電子激發態的大部分信息,包括能量轉移、電子轉移、弛豫以及異構化等研究。該技術手段主要是先用一束泵浦光產生激發態,再用另一束寬光譜范圍的探測光對瞬態中間物種吸光度進行光譜測量,能夠同時在超快時間和光譜維度對激發態動力學進行測量。
飛秒激光器作為系統光源并分為兩路,其中一束作為泵浦光將樣品從基態激發到激發態,另外一束光進入白光發生器生成超連續白光作為瞬態吸收的探測光。通過測試有以及無激發光材料吸光度的變化得到瞬態吸收信號。測量原理上,為了提前信噪比,減小探測光抖動造成的假信號,可以將探測光分為兩路,一路作為probe光,另一路作為reference光。同時還需要排除背景信號和熒光信號對瞬態吸收信號的影響。
材料因外光電效應產生能級躍遷主要發生在飛秒時間,這個過程伴隨著隨后的激發態弛豫,如電子或空間的復合在隨后發生,這些過程主要在皮秒、納秒時間時間尺度。對于很多半導體材料,由于內部往往存在缺陷態,還伴隨缺陷態參與的更慢的時間尺度,包括微秒、毫秒等時間尺度。飛秒瞬態吸收光譜可以得到飛秒-納秒時間范圍內的激發態動力學過程,是研究材料或有機分子中超快化學、物理過程的有力工具。
泵浦-探測原理
不同時間延遲(t)下獲取的瞬態吸收光譜
飛秒瞬態吸收光譜應用
作為超快光譜技術之一, 飛秒瞬態吸收光譜技術是重要的超快動力學研究手段,不僅可以探究分子的動力學過程, 還可以對一些表觀層面的現象進行更加深入的理解和闡釋。目前已廣泛應用于生物、物理、化學、材料等方面的研究。例如新型納米材料的光電轉化機制、光合作用的研究、DNA光損傷機制、光致變色反應等研究。
實測案例—光生載流子轉移和復合過程研究
鈣鈦礦MOFs 材料中的有機金屬骨架可提高鈣鈦 礦納米晶的穩定性,應用于更亮和更穩定的LED 器件, 瞬態 吸收光譜可以對其進行光物理過程的探測,從而在實驗室指導材料設計和生長。右圖為一種MOFs 穩定的鈣鈦礦納米晶的瞬態吸收光譜圖。
有機太陽能電池 (OSCs) 電荷復合與三重態激子相互作用
高性能有機光伏器件采用體異質結結構,通過眾多的給體-受體(D-A)異質結形成的電荷轉移態有助于激子態的解離。 然而,源自光生載流子復合所產生的電荷轉移態的自旋特性會導致形成低能量三重態激子(T1 )并引發弛豫過程發生,從 而導致光電流的損失。利用飛秒瞬態吸收光譜研究不同材料構型的激發態光譜和動力學過程發現,使用具有較弱激子結合 強度的給體和受體可以減少三重激子態的形成,同時又不犧牲激子解離效率。通過對OSCs電荷復合與三重態激子相互作 用機制,討論了其對材料設計、器件 工程和光物理的潛在影響,從而為未來有機光伏器件充分發揮其潛力提供了全面的基礎。
不同材料的二聚體離域態激子的瞬態吸收光譜和分子動力學模擬結果
有機太陽能電池不同材料組成的瞬態吸收光譜測試結果
技術參數
飛秒光源中心波長 | 800±10nm | 1030±3nm |
探測波長范圍 (UV-Vis-NIR) | 300-700nm;400-900nm; 450-1000nm;900-1700nm; | 300-500nm; 380-600nm; 500-1000nm; 900-1600nm |
泵浦光波長范圍 | 240-480nm;475-1160nm;1160-1600nm;1600nm-2600nm | 300-480nm; 600-900nm;1200-2500nm |
探測時間窗口 | 4ns/8ns | |
時間分辨率 | 1.5 倍激光器脈寬 | |
靈敏度 | 寬光譜 0.1ΔmOD,單波長 0.01ΔmOD | |
測試模式 | 反射、透射、背激發 | |
樣品腔 | 液體、粉末、薄膜 | |
軟件 | 探測光穩定性監測 、光譜預覽 、光譜矯正 、光譜平滑 、數據擬合 | |
功能拓展 | 微區光譜 | |
寬場瞬態吸收成像 | ||
時間相關單光子計數模塊:最小時間間隔 2ps, 最小壽命范圍 100ps,波長分辨率0.08nm | ||
飛秒克爾門時間分辨熒光光譜:光譜范圍400-900nm,激光脈寬50fs,樣品壽命測量時間窗口4ns |
示例數據
單晶氧化鋅瞬態吸收光譜測試結果
參考文獻
[1]Jiang, K., Zhang, J., Zhong, C. et al. Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture. Nat Energy 7, 1076–1086 (2022).
[2]Gillett, A.J., Privitera, A., Dilmurat, R.et al.The role of charge recombination to triplet excitons in organic solar cells. Nature 597, 666–671 (2021).
[3]Krishnapriya, K.C., Roy, P., Puttaraju, B. et al. Spin density encodes intramolecular singlet exciton fission in pentacene dimers. Nat Commun 10, 33 (2019).
關于卓立漢光
作為深耕光譜領域的國產品牌,卓立漢光始終以研發高品質產品為核心,在光譜檢測設備的自主創新之路上穩步前行。從精準捕捉物質發光特性的穩態瞬態熒光光譜儀、穩態熒光光譜儀,到解析物質分子結構的光柵光譜儀、傅里葉紅外光譜儀,每一款設備都凝聚著對技術的鉆研與對品質的堅守。
針對不同科研與應用需求,我們推出了覆蓋多場景的光譜系統:瞬態吸收光譜儀、飛秒瞬態吸收光譜系統可探究物質的超快光物理過程;熒光壽命成像、三維熒光光譜儀能從時空維度呈現熒光特性的細微變化;光致發光光譜儀為材料光學性能研究提供有力支持;激光誘導熒光光譜儀則在高靈敏度檢測領域展現卓*性能。
未來,卓立漢光將繼續以創新為驅動力,不斷優化光譜檢測技術,讓這些高品質的光譜產品為科研突破與產業升級注入更多 “中國力量",彰顯國產品牌在高*光譜設備領域的硬核實力。
下一篇:無底座光學接桿25mm